Logstash|How to split log that contains duplicate key

瀏覽人次: 1081
2022-02-17 更新

Logstash Logo

含有重覆 Key 的 Log 範例

在該範例中,我們可以發現如果要以 grok 解析該 Log,會產生多個重覆
Label,但以 1、2、3 後贅字序列的方式區別每個 Label 也不是一個好方法。
因此,這一次我們希望先用 ruby 將多組 Label 拆分為陣列,再使用 Split Plugin
的方式,再將此陣列拆為獨立一個 Log。

<166>Jul 4 15:02:51 xx-xxx BiMAPXXX[0000]: 10.10.10.10,XX00000-WWW,範例-GG,
Label: Security Update for Microsoft Update Time: 4/9/21 12:44:07 AM Severity: Important Product: Office CVE: ,
Label: Security Update for Microsoft Update Time: 4/9/21 12:46:18 AM Severity: Important Product: Office CVE: ,
Label: MS11-025 : Security Update for Update Time: 6/27/17 8:56:20 AM Severity: Important Product: Developer Tools, Runtimes, and Redistributables CVE: CVE-0000-0000

所以概念上,因為 Label 有三組,所以希望我們的 Log 由一組變為三組:

<166>Jul 4 15:02:51 xx-xxx BiMAPXXX[0000]:10.10.10.10,XX00000-WWW,範例-GG, Label: Security Update for Microsoft Update Time: 4/9/21 12:44:07 AM Severity:Important Product: Office CVE: 

<166>Jul 4 15:02:51 xx-xxx BiMAPXXX[0000]:10.10.10.10,XX00000-WWW,範例-GG, Label: Security Update for Microsoft Update Time: 4/9/21 12:46:18 AM Severity:Important Product: Office CVE: 

<166>Jul 4 15:02:51 xx-xxx BiMAPXXX[0000]:10.10.10.10,XX00000-WWW,範例-GG, Label: MS11-025 : Security Update for Update Time: 6/27/17 8:56:20 AMSeverity: Important Product: Developer Tools, Runtimes, and RedistributablesCVE: CVE-0000-0000 

使用 Ruby 將重覆性 Label 轉為陣列

先用 grok 將標頭解析,並將後面 Label 重覆的部份,統一收於 remain_log

grok { 
    match => {"message" => [
        "<%{NUMBER:log_id}>%{CISCOTIMESTAMP:event_time}%{SPACE}%{NOTSPACE:device_name}%{SPACE}%{WORD:module}[%{NUMBER:module_event_id}]:%{SPACE}%{IPV4:ip},%{DATA:user_computer_name},%{DATA:user_name},%{GREEDYDATA:remain_log}",
        "%{GREEDYDATA:bimap_log}"
    ]}
}

透過 grok 好的 remain_log,丟進 ruby 中處理,以 Label 為 split
的元素,將其轉為陣列存放於 label_arr 中。

def register(params)
end
def filter(event)
    splitter = "Label: "
        if !event.get("remain_log").nil?
                if event.get("remain_log").include? splitter
                        dataArr = event.get("remain_log").split(splitter).reject { |c| c.empty? }
                        event.set("label_arr", dataArr)
                else
                        event.set("label_arr", [event.get("remain_log")])
                end
        end
        return [event]
end

使用 Split Plugin 將 Log 拆分

因為使用 ruby 把重覆性的 Label 的轉成陣列,並存放於 label_arr
中,接下來就可以使用 logstash split
plugin,將陣列的每一個元素,轉換為各別獨立的一段 Log。

split { 
    field => "label_arr"
    target => "advise_information"
}

透過 Split 後的資料,就會依照 Label 的重覆數量,轉為對應組數的 Log。

完整程式

Logstash:

filter {
    grok {
        match => {"message" => [
                "<%{NUMBER:log_id}>%{CISCOTIMESTAMP:event_time}%{SPACE}%{NOTSPACE:device_name}%{SPACE}%{WORD:module}[%{NUMBER:module_event_id}]:%{SPACE}%{IPV4:ip},%{DATA:user_computer_name},%{DATA:user_name},%{GREEDYDATA:remain_log}",
                "%{GREEDYDATA:bimap_log}"
        ]}
    }
    ruby {
        path => "./bimap.rb"
    }
    if [label_arr] {
        split {
            field => "label_arr"
            target => "advise_information"
        }
    }
    grok {
        match => {"advise_information" => [
            "%{DATA:update_item}%{SPACE}Update Time:%{SPACE}%{DATA:update_time}%{SPACE}Severity:%{SPACE}%{DATA:severity}%{SPACE}Product:%{SPACE}%{WORD:product}%{SPACE}CVE:%{SPACE}%{GREEDYDATA:CVE},",
            "%{DATA:update_item}%{SPACE}Update Time:%{SPACE}%{DATA:update_time}%{SPACE}Severity:%{SPACE}%{DATA:severity}%{SPACE}Product:%{SPACE}%{WORD:product}%{SPACE}CVE:%{SPACE}%{GREEDYDATA:CVE}",
            "%{GREEDYDATA:advise_information_log}"
        ]}
    }
    mutate {
        remove_field => [ "label_arr", "advise_information", "reamin_log" ]
    }
}

Ruby Code:

def register(params)
end
def filter(event)
    splitter = "Label: "
        if !event.get("remain_log").nil?
                if event.get("remain_log").include? splitter
                        dataArr = event.get("remain_log").split(splitter).reject { |c| c.empty? }
                        event.set("label_arr", dataArr)
                else
                        event.set("label_arr", [event.get("remain_log")])
                end
        end
        return [event]
end

快速跳轉目錄

✦ 集先鋒 Bimap – 企業建置高速穩定的海量日誌分析平台✦

集中不同的結構化資料和非結構化日誌,並進行關聯性的大數據整合,客製化儀表版、自訂事件告警、機器學習等等,以滿足各種大數據的應用場景和解決方案。